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Abstract

We model learning in a continuous-time Brownian setting where there is prior
ambiguity. The associated model of preference values robustness and is time-
consistent. The model is applied to study optimal learning when the choice between
actions can be postponed, at a per-unit-time cost, in order to observe a signal that
provides information about an unknown parameter. The corresponding optimal
stopping problem is solved in closed-form in two speci�c settings: Ellsberg�s two-
urn thought experiment expanded to allow learning before the choice of bets, and a
robust version of the classical problem of sequential testing of two simple hypothe-
ses about the unknown drift of a Wiener process. In both cases, the link between
robustness and the demand for learning is the focus.
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1. Introduction

We consider a decision-maker (DM) choosing between actions whose payo¤s are uncer-
tain because they depend on both exogenous randomness and on an unknown parameter
�. She can postpone the choice of action so as to learn about � by observing the realiza-
tion of a signal modeled by a Brownian motion with drift. Because of a per-unit-time
cost of sampling, which can be material or cognitive, she faces an optimal stopping
problem. A key feature is that DM does not have su¢ cient information to arrive at a
single prior about �, that is, there is ambiguity about �. Therefore, prior beliefs are
represented by a nonsingleton set of probability measures, and DM seeks to make robust
choices of both stopping time and action by solving a maxmin problem. In addition,
she is forward-looking and reasons by backward induction, as in the continuous-time
version of maxmin utility given by Chen and Epstein (2002). One contribution herein
is to extend the latter model to accommodate learning. As a result, we capture ro-
bustness to ambiguity (or model uncertainty), learning and time-consistency. The other
contribution is to investigate optimal learning in two speci�c settings, outlined next,
where the corresponding optimal stopping problems are solved explicitly and the e¤ects
of ambiguity on optimal learning are determined.

The �rst speci�c context begins with Ellsberg�s metaphorical thought experiment:
There are two urns, each containing balls that are either red or blue, where the "known"
or risky urn contains an equal number of red and blue balls, while no information is
provided about the proportion of red balls in the "unknown" or ambiguous urn. DM must
choose between betting on the color drawn from the risky urn or from the ambiguous urn.
The intuitive behavior highlighted by Ellsberg is the choice to bet on the draw from
the risky urn no matter the color, which behavior is paradoxical for subjective expected
utility theory, or indeed, for any model in which beliefs are represented by a single
probability measure. Ellsberg�s paradox is often taken as a normative critique of the
Bayesian model and of the view that the single prior representation of beliefs is implied
by rationality (e.g., Gilboa 2009, 2015; Gilboa et al. 2012). Here we add to the thought
experiment by including a possibility to learn. Speci�cally, we allow DM to postpone
her choice so that she can observe realizations of a di¤usion process whose drift is equal
to the proportion of red in the ambiguous urn. Under speci�c parametric restrictions we
completely describe the optimal joint learning and betting strategy. In particular, we
show that it is optimal to reject the opportunity to learn if and only if ambiguity aversion
(suitably measured) exceeds a cut-o¤ level. The rationality of no learning suggests that
one needs to reexamine and qualify the common presumption that ambiguity would
fade away, or at least diminish, in the presence of learning opportunities (Marinacci
2002). It can also explain experimental �ndings (Trautman and Zeckhauser 2013) that
some subjects neglect opportunities to learn about an ambiguous urn even at no visible
(material) cost. In addition, our model is suggestive of laboratory experiments that
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could provide further evidence on the connection between ambiguity and the demand
for learning.

The second application is to the classical problem of sequential testing of two simple
hypotheses about the unknown drift of a Wiener process. Wald (1947) introduced the
sequential probability ratio test (SPRT), where desired error probabilities determine
the cut-o¤ values for deciding when to stop sampling and accept one of the hypotheses;
Peskir and Shiryaev (2006, Ch. 6) analyse a Bayesian subjectivist approach and derive
SPRT as the solution to an optimal stopping problem. We extend the latter analy-
sis to accommodate situations where the statistician/analyst does not have su¢ cient
information to justify reliance on a single prior, and we show that a desire for robust-
ness lengthens optimal sampling relative to what would be chosen by any "compatible"
Bayesian. In particular, under robustness it may be optimal to continue sampling even
given a realized sample at which ALL compatible Bayesians would choose to stop. Be-
cause this application is clearly prescriptive, we emphasize that the Chen-Epstein model
has axiomatic foundations in the sense that its discrete-time counterpart model (Ep-
stein and Schneider 2003) is axiomatic, which foundations endow the present model
with corresponding credentials as a prescriptive model.

It is well-known that modeling a concern with ambiguity and robust decision-making
leads to "nonlinear" objective functions, which, in a dynamic setting and in the absence
of commitment, can lead to time-inconsistency issues. See Peskir (2017) for analyses of
optimal stopping problems featuring such time inconsistency. A similar issue arises also
in a risk context where there is a known objective probability law, but where preference
does not conform to von Neumann-Morgenstern�s expected utility theory (Ebert and
Strack 2017). Such models are problematic in some normative contexts. It is not clear
why one would ever prescribe to a decision-maker (who is unable or unwilling to commit)
that she should adopt a criterion function that would imply time-inconsistent plans and
that she should then resolve these inconsistencies by behaving strategically against her
future selves (as is commonly assumed). In descriptive contexts, one might view time-
inconsistent models as appealing because they capture some form of bounded rationality.
But such a view seems (to us) misplaced if one adopts the sophisticated game-theoretic
approach to predicting behavior (as, for example, in the two works just cited). The latter
assumption does not seem cognitively less demanding than assuming that preference is
arrived at after reasoning about the future through backward induction, which underlies
the recursive Chen-Epstein model of utility.

It is important to understand that, roughly speaking, time-consistency is the require-
ment that a contingent plan (e.g., a stopping strategy) that is optimal ex ante remain
optimal conditional on every subsequent realization assuming there are no surprises or
unforeseen events. A possible argument against such consistency, (that is sometimes
expressed in the statistics literature), is that surprises are inevitable and thus that any
prescription should take that into account rather than excluding their possibility. We
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would agree that a sophisticated decision-maker would expect that surprises may occur
while (necessarily) being unable to describe what form they could take. However, to
the best of our knowledge there currently does not exist a convincing model in the eco-
nomics, statistics or psychology literatures of how such an individual should (or would)
behave, that is, how the awareness that she may be missing something in her perception
of the future should (or would) a¤ect current behavior. That leaves time-consistency
as a sensible guiding principle with the understanding that reoptimization can (and
should) occur if there is a surprise.

The recursive maxmin model has been used in macroeconomics and �nance (e.g.,
Epstein and Schneider 2010) and also in robust multistage stochastic optimization (e.g.,
Shapiro (2016) and the references therein, including to the closely related literature on
conditional risk measures). Shapiro focuses on a property of sets of measures, called rec-
tangularity following Epstein and Schneider (2003), that underlies recursivity of utility
and time-consistency. Most of the existing literature deals with a discrete-time set-
ting. The theoretical literature on learning under ambiguity is sparse and limited to
passive learning (e.g., Epstein and Schneider 2007, 2008). We are not aware of any
work, whether in a discrete or continuous-time setting, that deals with optimal learning
under robustness and time-consistency. With regard to hypothesis testing, this paper
adds to the literature on robust Bayesian statistics (Berger 1984,1985,1994; Rios-Insua
and Ruggeri 2000), which is largely restricted to a static environment. Walley (1991)
goes further and considers both a prior and a single posterior stage, but not sequential
hypothesis testing. For a frequentist approach to robust sequential testing see Huber
(1965).

The paper proceeds as follows. The next section describes the model of utility
extending Chen-Epstein to accommodate learning. Readers who are primarily interested
in the two applications can skip this relatively technical section and move directly to
§3 and §4 where the Ellsberg and hypothesis testing contexts are studied respectively.
Proofs (and added details about the Ellsberg setting) are provided in three appendices.

2. Recursive utility with learning

Here we outline the model of recursive utility under ambiguity due to Chen and Epstein
(2002)�CE below�and then we describe how it can be adapted to include learning with
partial information. The latter description is given in the simplest context adequate
for the applications below. However, it should be clear that it can be adapted more
generally.

Let (
;G1; P0) be a probability space, andW = (Wt)0�t<1 a 1-dimensional Brown-
ian motion which generates the �ltration G = fGtgt�0, with Gt % G1. (All probability
spaces are taken to be complete and all related �ltrations are augmented in the usual
sense.) The measure P0 is a reference measure whose role is only to de�ne null events.
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CE de�ne a set of predictive priors P0 on (
;G1) through speci�cation of their densities
with respect to P0. (We adopt the common practice of distinguishing terminologically
between beliefs about the state space, referred to as predictive priors, and beliefs about
parameters, which are referred to as priors.) To do so, they take as an additional
primitive a (suitably adapted) set-valued process (�t). (Technical restrictions are that
�t : 
 K � Rd for some compact set K independent of t, 0 2 �t (!) dt
dP0 a:s:, and
that each �t is convex- and compact-valued.) De�ne the associated set of real-valued
processes by

� = f� = (�t) j �t(!) 2 �t(!) dt
 dP0 a:s:g:

Then each � 2 � de�nes a probability measure on G1, denoted P �, that is equivalent
to P0 and given by

dP �

dP0
jGt= expf�

Z t

0
�2sds�

Z t

0
�sdWsg for all t.

Accordingly, each �t(!) 2 �t(!) can be thought of roughly as de�ning conditional beliefs
about Gt+dt, and �t (!) is called the set of density generators at (t; !). By the Girsanov
Theorem,

dW �
t = �tdt+ dWt (2.1)

is a Brownian motion under P �, which thus can be understood as an alternative hy-
pothesis about the drift of the driving process W (the drift is 0 under P0). Finally,

P0 � fP � : � 2 �g . (2.2)

The set P0 is used to de�ne a time 0 utility function on a suitable set of random
payo¤s denominated in utils. In order to model in the sequel the choice of how long to
learn (or sample), we consider a set of stopping times � , that is, each � is an adapted
R+-valued and fGtg-adapted random variable de�ned on 
, that is, f! : � (!) > tg 2
Gt for every t. For each such � , utility is de�ned on the set L(�) of real-valued random
variables given by

L(�) = f� j � is G� -measurable and sup
Q2P0

EQ j � j<1g.

The time 0 utility of any � 2 L(�) is given by

U0 (�) = inf
Q2P0

EQ� = � sup
Q2P0

EQ[��]: (2.3)

It is natural to consider also conditional utilities at each (t; !), where

Ut (�) = ess inf
Q2P0

EQ[� j Gt]. (2.4)
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In words, Ut (�) is the utility of � at time t conditional on the information available
then and given the state ! (the dependence of Ut (�) on ! is suppressed notationally).
The special construction of P0 delivers the following counterpart of the law of total
probability (or law of iterated expectations): For each �, and 0 � t < t0,

Ut (�) = ess inf
Q2P0

EQ [Ut0 (�) j Gt] . (2.5)

This recursivity ultimately delivers the time-consistency of optimal choices.
The components P0, W , (�t) and fGtg are primitives in CE. Next we specify them

in terms of the deeper primitives of a model that includes learning about an unknown
parameter � 2 � � R.

Speci�cally, begin with a measurable space (
;F), a �ltration fFtg, Ft % F1 � F ,
and a collection fP� : � 2 M0g of pairwise equivalent probability measures on (
;F).
Though � is an unknown deterministic parameter, for mathematical precision we view �
as a random variable on (
;F). Further, for each � 2M0, P� induces the distribution
� for � via �(A) = P�(f� 2 Ag) for all Borel measurable A � �. Accordingly,M0 can
be viewed as a set of priors on �, and its nonsingleton nature indicates ambiguity about
�. There is also a standard Brownian motion B = (Bt), with generated �ltration fFBt g,
such that B is independent of � under each P�. B is the Brownian motion driving the
signals process Z = (Zt) according to

Zt =

Z t

0
�ds+

Z t

0
�dBs = �t+ �Bt; (2.6)

where � is a known positive constant. Because only realizations of Zt are observable, take
fGtg to be the �ltration generated by Z. Assuming knowledge of the signal structure,
Bayesian updating of � 2 M0 gives the posterior �t at time t. Thus prior-by-prior
Bayesian updating leads to the set-valued process (Mt) of posteriors on �.

Proceed to specify the other CE components P0, W and (�t).

Step 1. Take � 2 M0. By standard �ltering theory (Liptser and Shiryaev 1977,
Theorem 8.3), if we replace the unknown parameter � by the estimate b��t = R

�d�t,
then we can rewrite (2.6) in the form

dZt = �̂
�

t (Zt) dt+ �(dBt +
� � �̂�t (Zt)

�
dt) (2.7)

= �̂
�

t (Zt) dt+ �d
~B�t ,

where the innovation process ( ~B�t ) is a standard fGtg-adapted Brownian motion on
(
;G1; P�). Thus ( ~B�t ) takes the same role as (W

�
t ) in CE (see (2.1) above). Rewrite

(2.7) as

d ~B�t = �
1

�
�̂
�

t (Zt) dt+
1

�
dZt
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which suggests that (Zt=�) (resp. (��̂
�

t (Zt) =�)) can be chosen as the Brownian motion
(Wt) (resp. the drift (�t)) in (2.1).

Step 2. Find a reference probability measure P0 on (
;G1) under which (Zt=�) is a
fGtg-adapted Brownian motion on (
;G1). Fix � 2M0 and de�ne P0 by:

dP0
dP�

jGt = expf� 1
2�2

R t
0 (�̂

�

s (Zs))
2ds� 1

�

R t
0 �̂

�

s (Zs) d
~B�s g

= expf 1
2�2

R t
0 (�̂

�

s (Zs))
2ds� 1

�2

R t
0 �̂

�

s (Zs) dZsg.

By Girsanov�s Theorem, (Zt=�) is a fGtg-adapted Brownian motion under P0.

Step 3. Viewing P0 as a reference measure, perturb it. For each � 2 M0, de�ne P
�
0

on (
;G1) by

dP�0
dP0

jGt= expf�
1

2�2

Z t

0
(�̂
�

s (Zs))
2ds+

1

�2

Z t

0
�̂
�

s (Zs) dZsg:

By Girsanov, d ~B�t = � 1
� �̂
�

t (Zt) dt+
1
�dZt is a Brownian motion under P

�
0 .

In general, P� 6= P�0 . However, they induce the identical distribution for Z. This
is because ( ~B�t ) is a fGtg-adapted Brownian motion under both P� and P

�
0 . Therefore,

by the uniqueness of weak solutions to SDEs, the solution Zt of (2.7) on (
;F1; P�)
and the solution Z 0 of (2.7) on (
;G1; P�0 ) have identical distributions. (Argue as in
Oksendal (2005, Example 8.6.9). See his Section 5.3 for discussion of weak versus strong
solutions of SDEs.) Given that only the distribution of signals matters in our model,
there is no reason to distinguish between the two probability measures. Thus we apply
CE to the following components: W and P0 de�ned in Step 2, and �t given by

�t = f��̂
�

t =� : � 2M0;b��t = Z �d�tg. (2.8)

In summary, taking these speci�cations for P0, W , (�t) and fGtg in the CE model
yields a set P0 of predictive priors, and a corresponding utility function, that capture
prior ambiguity about the parameter � (through M0), learning as signals are real-
ized (through updating to the set of posteriors Mt), and robust (maxmin) and time-
consistent decision-making (because of (2.5)). We use this model in the two applications
that follow.

Remark 1. We add a few remarks about related literature. Cheng and Reidel (2013)
describe how CE can be applied to study optimal stopping, but they do not discuss
learning. CE suggest (but do not prove) that their framework can accommodate pas-
sive learning. We are aware of two papers that explicitly address passive learning in
the CE framework�Choi (2016) and Miao (2009)�whose models are much di¤erent than
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the above. Two core distinguishing features of Choi�s model are: (i) his set of priors
M0 consists exclusively of Dirac, or dogmatic, measures which naturally do not ad-
mit Bayesian updating; and (ii) ambiguity a¤ects learning primarily because there are
multiple-likelihoods, re�ecting the assumption that the signal structure is not well un-
derstood. See the related discrete-time work of Epstein and Schneider (2007, 2008) for
the distinction between prior ambiguity about an unknown parameter, as in our model,
and ambiguity about the signal structure (or the likelihood function, as in Choi). Our
focus on prior ambiguity derives from our objective�trying to understand the connection
between ambiguity and (optimal) learning in the situation most favorable for learning
which is that the signal structure is well understood.

Miao focuses on partial information and �ltering in the presence of ambiguity. In
his approach, application of CE is immediate and partial information does not make
much di¤erence for the analysis. He applies classical �ltering for a reference model
and then adds time- and history-invariant ambiguity to the updated reference measure.
There is no interaction between �ltering and ambiguity; for example, the dependence
of estimates on the prior � as in (2.8) is absent.

3. Optimal learning and Ellsberg�s urns

3.1. The setting

There are two urns each containing balls that are either red or blue: a risky urn in which
the proportion of red balls is 12 and an ambiguous urn in which the color composition is
unknown. Denote by �+ 1

2 the unknown proportion of red balls, where � 2 � =
�
�1
2 ;
1
2

�
is the bias towards red: � > 0 indicates more red than blue, � < 0 indicates the opposite,
and � = 0 indicates an equal number as in the risky urn. (We suppose that the number
of balls in the ambiguous urn is large and treat � as a continuous variable.) There is
ambiguity about � modeled byM0 � �(�).

Before choosing between bets, DM is given the opportunity to postpone her choice
so that she can learn about � by observing realizations of the signal process Z given
by (2.6). The underlying state space 
, the �ltration fGtg generated by Z, and other
notation are as in §2. Unless speci�ed otherwise, all processes below are taken to be
fGtg-adapted even where not stated explicitly.

There is a constant per-unit-time cost c > 0 of learning. If DM stops learning at t,
then her conditional expected payo¤ (in utils) is Xt; think of Xt as the indirect utility
she can attain by choosing optimally between the bets available at t. Her choice of
when to stop is described by a stopping time (or strategy) � ; the set of all stopping
strategies is �. DM is forward-looking and has time 0 beliefs about future signals given
by the set P0 � �(
;G1) described in the previous section. (As noted there, P0 is a
continuous-time counterpart of the "rectangular" set of predictive priors introduced and
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axiomatized in a discrete-time setting by Epstein and Schneider (2003); in particular,
it models a sophisticated forward-looking agent who can be thought of as reasoning by
backward induction.) Thus as a maxmin agent she chooses an optimal stopping strategy
�� by solving

max
�2�

min
P2P0

EP (X� � c�) . (3.1)

For the setting of choosing between bets on urns, Xt takes a speci�c form. Bets
have prizes 1 and 0, and are evaluated according to maxmin with utility index u which,
without loss of generality, is normalized to satisfy

u (0) = 0, u (1) = 1.

Then the time t-conditional utility of betting on red (blue) from the ambiguous urn is
min�2Mt E� (min�2Mt E

��), where

E� �
Z
(12 + �)d� and E

�� �
Z �

1
2 � �

�
d�.

The bet on red (or blue) from the risky urn has utility 1
2 .

DM can choose between betting on the draw from the risky or ambiguous urn and
also on drawing red or blue. Thus, if she makes her betting choice at time t, her payo¤
is given by

Xt = max

�
min
�2Mt

E�; min
�2Mt

E��; 12

�
. (3.2)

In order to obtain closed-form solutions to the optimal stopping problem, we spe-
cialize prior beliefs about the bias and assume, for parameters 0 < � < 1

2 and 0 < � < 1,
that

M0 = f(1�m)��� +m�� :
1� �
2

� m � 1 + �

2
g. (3.3)

According to each prior, the urn is biased, (the proportion of red is either 12�� or
1
2+�),

but there is ambiguity about which direction for the bias is more likely. The result is
that initially DM conforms to the intuitive ambiguity-averse behavior in Ellsberg�s 2-urn
experiment: she strictly prefers to bet on the risky urn to betting on either color from
the ambiguous urn because

min
�2M0

E� = min
�2M0

E�� =
1

2
� �� < 1

2
. (3.4)

The speci�cationM0 involves the two parameters � and �. We interpret � as mod-
eling ambiguity (aversion): the set M0 can be identi�ed with the probability interval�
1��
2 ;

1+�
2

�
for the positive bias �, and this interval is larger if � increases. At the ex-

treme when � = 0, then M0 is the singleton according to which the two biases are
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equally likely, and DM is a Bayesian who faces uncertainty with variance �2 about
the true bias, but no ambiguity. We interpret � as measuring the degree of this prior
uncertainty, or prior variance; (� = 0 implies certainty that the composition of the
ambiguous urn is identical to that of the risky urn). The model�s other two parameters
c and � have obvious interpretations.

Bayesian updating of each prior yields the following set of posteriors (see Appendix
A):

Mt = f(1�m)��� +m�� : mt � m � mtg, (3.5)

where

mt =
1��
1+�'(Zt)

1 + 1��
1+�'(Zt)

, mt =
1+�
1��'(Zt)

1 + 1+�
1��'(Zt)

, (3.6)

and
'(z) = exp

�
2�z=�2

�
. (3.7)

The probability interval [mt;mt] for the positive bias � changes over time, with the
response to the signal captured by the function '. One obtains, therefore, that

min
�2Mt

E� = (12 + �)�
2�

1 + 1��
1+�'(Zt)

(3.8)

min
�2Mt

E�� = (12 � �) +
2�

1 + 1+�
1��'(Zt)

and hence,

Xt = X(Zt) =

8>><>>:
(12 + �)�

2�
1+ 1��

1+�
'(Zt)

if Zt > �2

2� log(
1+�
1��)

(12 � �) +
2�

1+ 1+�
1��'(Zt)

if Zt < ��2

2� log(
1+�
1��)

1
2 otherwise.

(3.9)

3.2. Optimal stopping

We give an explicit solution to the optimal stopping problem (3.1), assuming (3.5), (3.9)
and the construction of P0 detailed in §2. (Below "almost surely" quali�cations should
be understood, even where not stated explicitly, and as de�ned relative to any measure
in P0.)

Let
l(r) = 2 log(

r

1� r )�
1

r
+

1

1� r ; r 2 (0; 1), (3.10)

and de�ne br by
l(br) = 2�3

c�2
. (3.11)
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br is uniquely de�ned thereby and 1
2 < br < 1, because l(�) is strictly increasing, l(0) =

�1, l(12) = 0, and l(1) =1.

Theorem 3.1. (i) �� = 0 if and only if 1+�2 � br, in which case X�� = X0 = 1
2 .

(ii) Let 1+�2 < br. Then the optimal stopping time satis�es �� > 0 and is given by
�� = minft � 0 : j Zt j� zg;

where

z =
�2

2�

�
log

1 + �

1� � + log
r

1� r

�
, (3.12a)

and r, br < r < 1, is the unique solution to the equation
l(r) + l(

1 + �

2
) =

4�3

c�2
. (3.13)

Moreover, on stopping either the bet on red is chosen (if Z�� � z) or the bet on blue is
chosen (if Z�� � �z); the bet on the risky urn is never optimal at �� > 0.

Part (i) characterizes conditions under which no learning is optimal. This case
excludes the limiting Bayesian model with � = 0 for which some learning is necessarily
optimal for all values of the remaining parameters. In fact, it is optimal to reject learning
if and only if ambiguity, as measured by �, is suitably large. Then the bet on the risky
urn is chosen immediately and the opportunity to learn is declined. The cut-o¤ value
2br � 1 for � is increasing in � and decreasing in c and �. In the complementary case
where some learning is chosen, (ii) shows that it is optimal to sample as long as the
signal Zt lies in the continuation interval (�z; z). When Zt hits either endpoint, learning
stops and DM bets on the ambiguous urn. Thus the risky urn is chosen (if and) only
if it is not optimal to learn.

There is simple intuition for the noted features of the optimal strategy. First, con-
sider the e¤ect of ambiguity (large �) on the incentive to learn. DM�s prior beliefs admit
only � and �� as the two possible values for the true bias. She will incur the cost of
learning if she believes that she is likely to learn quickly which of these is true. She
understands that she will come to accept � (or ��) as being true given realization of suf-
�ciently large positive (negative) values for Zt. A di¢ culty is that she is not sure which
probability law in her set P0 describes the signal process. As a conservative decision-
maker, she bases her decisions on the worst-case scenario P � in her set. Because she is
trying to learn, the worst-case minimizes the probability of extreme, hence revealing,
signal realizations, which, informally speaking, occurs if P �(fdZt > 0g j Zt > 0) and
P �(fdZt < 0g j Zt < 0) are as small as possible. That is, if Zt > 0, then the distribution
of the increment dZt is computed using the posterior associated with that prior inM0
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which assigns the largest probability 1+�
2 to the negative bias ��, while if Zt < 0, then

the distribution of the increment is computed using the posterior associated with the
prior assigning the largest probability 1+�

2 to the positive bias �. It follows that the
prospect of learning from future signals is less attractive when viewed from the perspec-
tive of P � the greater is �. A second e¤ect of an increase in � is that it reduces the ex
ante utility of betting on the ambiguous urn (3.4) and hence implies that signals in an
increasingly large interval would not change betting preference. Consequently, a small
sample is unlikely to be of value �only long samples are useful. Together, these two
e¤ects suggest existence of a cuto¤ value for � beyond which no amount of learning is
su¢ ciently attractive to justify its cost.

There remains the following question for smaller values of �: why is it never optimal
to try learning for a while and then, for some sample realizations, to stop and bet on
the risky urn? The intuition, adapted from Fudenberg, Strack and Strzalecki (2017), is
that this feature is a consequence of the speci�cation M0 for the set of priors. To see
why, suppose that Zt is small for some positive t. A possible interpretation, particularly
for large t, is that the true bias is small and thus that there is little to be gained by
continuing to sample � DM might as well stop and bet on the risky urn. But this
reasoning is excluded when, as in our speci�cation, DM is certain that the bias is ��.
Then signals su¢ ciently near 0 must be noise and the situation is essentially the same
as it was at the start. Hence, if stopping to bet on the risky urn were optimal at t,
it would have been optimal also at time 0. This intuition is suggestive of the likely
consequences of generalizing the speci�cation of M0. Suppose, for example, that M0

is such that all its priors share a common �nite support. We conjecture that then the
predicted incompatibility of learning and betting on the risky urn would be overturned
if and only if the zero bias point is in the common support.

See Appendix B for additional features of the optimal stopping strategy that are
derived from the explicit solution given in the theorem.

4. A robust sequential hypothesis test

The setting and notation are slightly modi�ed from the Ellsberg context. The major
modi�cations are: the absence of an unambiguous urn or "outside option," and dropping
the symmetric treatment of the two colors which here are the two hypotheses. We
reparametrize slightly so that the parameter set is � = f0; 1g and the signal process is
given by

Zt = ��t+ �Bt, (4.1)

with � 6= 0 and � > 0 given. The task is to choose between the two statistical hypotheses

H0 : � = 0 and H1 : � = 1:
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The loss function speci�es a zero loss if d = �, (d 2 f0; 1g denotes the decision adopted
on stopping) and otherwise is given by

L (� = 1; d = 0) = a > 0,

L (� = 0; d = 1) = b > 0.

Initial beliefs are given by

M0 = f�m = (1�m)�0 +m�1 : m � m � mg, (4.2)

and prior-by-prior Bayesian updating gives the time t set of posteriorsMt,

Mt = f�mt = (1�m)�0 +m�1 : mt � m � mtg.

Here the largest and smallest posterior probabilities for H1 are

mt =
m
1�m'(t; Zt)

1 + m
1�m'(t; Zt)

, mt =

m
1�m'(t; Zt)

1 + m
1�m'(t; Zt)

,

where

'(t; z) = expf �
�2

�
z � �t

2

�
g.

The minimum expected loss if sampling is stopped at t is

Xt = min famt; b (1�mt)g . (4.3)

This leads to the following optimal stopping problem:

min
�
max
P2P0

EP (� +X� ) . (4.4)

(The set P0 of predictive priors is constructed as described in the previous sections.)
To describe the solution, de�ne the increasing function l (�) on (0; 1) by

l(r) =
2�2

�2
[2 log(

r

1� r )�
1

r
+

1

1� r ]:

For perspective, consider �rst the special Bayesian case (M0 = f�g, henceMt = f�tg,
�t (1) = mt). De�ne rB1 < r

B
2 by

l(rB1 ) = l(
b

a+ b
)� a, l(rB2 ) = l(

b

a+ b
) + b.
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Theorem 4.1 (Peskir and Shiryaev 2006). In the Bayesian case, it is optimal to
continue at t if and only if

rB1 < mt < r
B
2 : (4.5)

Otherwise, it is optimal to accept H1 or H0 according as mt � rB2 or mt � rB1 respec-
tively.

The cut-o¤ values in the general case are de�ned as follows. Let

~Zt =
�t

2
+
�2

�
log(

b� a
2a

1�m
m

+

s
(b� a)2
4a2

(
1�m
m

)2 +
b

a

1�m
m

1�m
m

), (4.6)

and de�ne r1 < r2 by

l(r1) = l
�
mt

�
~Zt

��
� a, l(r2) = l

�
mt

�
~Zt

��
+ b.

Theorem 4.2. In the general model, it is optimal to continue at t if and only if

[mt;mt] \ (r1; r2) 6= ?. (4.7)

Otherwise, it is optimal to acceptH1 orH0 according asmt � r2 ormt � r1 respectively.

Compare the two results assuming m 6=m and that the Bayesian�s prior probability
for H1 lies in the interval [m;m], (which is what we mean in §1 and below by a "com-
patible Bayesian"). Then it is easy to see from r1 < r

B
1 < r

B
2 < r2 that the desire for

robustness leads to the optimality of longer sampling. Note that the robustness-seeking
DM may choose to continue sampling even given a realized sample at which ALL com-
patible Bayesians would choose to stop (this occurs if r1 < mt < r

B
1 or r

B
2 < mt < r2).

In this sense, focussing on multiple Bayesian agents alone understates the value of sam-
pling.

Proof of the theorem is similar to that of Theorem 3.1 and is available upon request.
Note that the stopping conditions could be expressed alternatively using the signal
process Zt as in Theorem 3.1 which would make the similarity between the two theorems
even more apparent.

Remark 2. Time-consistency in the present context is closely related to the Stopping
Rule Principle � that the stopping rule should have no e¤ect on what is inferred from
observed data and hence on the decision taken after stopping (Berger 1985). It is well-
known that: (i) conventional frequentist methods, based on ex ante �xed sample size
signi�cance levels, violate this Principle and permit the analyst to sample to a fore-
gone conclusion when data-dependent stopping rules are permitted; and (ii) Bayesian
posterior odds analysis satis�es the Principle. Kadane, Schervish and Seidenfeld (1996)
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point to the law of iterated expectations as responsible for excluding foregone conclu-
sions (if the prior is countably additive). Equation (2.5) is a nonlinear counterpart that
we suspect plays a similar role in our model (though details are beyond the scope of
this paper).

A. Appendix: Proof Of Theorem 3.1

First, note that the formula (3.5) describing posteriors follows from Liptser and Shiryaev
(1977, Theorem 9.1): given any � = (1�m)��1+m��2 , then �t � �t (�2) satis�es �0 = m
and

d�t = �2��1
�2

�t(1� �t)[dZt � (�1(1� �t) + �2�t)dt].

The solution is

�t =
m

1�m'(t; Zt)=
�
1 +

m

1�m'(t; Zt)
�
,

where

'(t; z) = expf�2 � �1
�2

z � 1

2�2
(�22 � �21)tg:

In particular, for the two extreme measures, � = �;�, satisfying, for all t,

�t (�) = mt and �t (�) = mt,

one obtains the corresponding parameter estimates

b��t (Zt) = �� 2�

1 + 1+�
1��'(Zt)

, and (A.1)

�̂
�

t (Zt) = �� 2�

1 + 1��
1+�'(Zt)

.

Before proceeding to the formal proof, consider the Figure which illustrates both the
theorem and elements in the proof below. The red (blue) curve represents the (minimum
expected) payo¤ to a bet on red (blue) conditional on each signal z. The payo¤, in green,
to the bet on the risky urn equals 1=2 for every z. The upper envelope of these three
curves is the graph of X (z), the maximum payo¤ possible if sampling ceases and a
bet is chosen given z. Because v, the value function for the optimal stopping problem,
includes the option of waiting longer before choosing between bets, it lies everywhere
weakly above X, and coincides with X at values of z where further sampling is not
optimal. Since z = 0 at time 0, the (earliest) stopping time occurs at the smallest j z j
where v and X coincide, which occurs at 0 in I corresponding to part (i) of the theorem
(�z is de�ned in the proof of (i) below), and at �z in II corresponding to part (ii) of
the theorem. Note that at stopping points there is a smooth �t between v and X as is
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common in the free-boundary approach to analysing optimal stopping problems (Peskir
and Shiryaev 2006)). In the zero-learning case portrayed, the contact between v and
the horizontal line at 12 extends for a small interval (denoted [�bz; bz] in the proof) about
0. The two �gures share the parameter values (c; �; �) =

�
:01; 1; 18

�
. They di¤er only

in the value of �, (:04 versus :05), which di¤erence is signi�cant because the no-learning
cut-o¤ value for � is 2br � 1 = :0488. Accordingly, there is no sampling when � = :05
and the expected optimal sample size equals :61 if � = :04 and the true bias is zero (by
(B.1)).

Proof of Theorem 3.1: For both (i) and (ii), the strategy is to: (a) guess the P �

in P0 that is the worst-case scenario; (b) solve the classical optimal stopping problem
given the single prior P �; (c) show that the value function derived in (b) is also the
value function for our problem (3.1); and (d) use the value function to derive ��. The
process is aided by intuition derived from analysis of the modi�ed optimal stopping
problem where the bets on stopping are on a single �xed color, say red, and the choice
is only between urns. Analysis of this problem is simpler because it is apparent that the
worst-case, at every time and sample, corresponds to the measure in M0 that assigns
the lowest (prior and posterior) probability to the bias towards red. (In our problem,
in contrast, the identity of the worst-case prior varies with the sample.) Solution of the
single-color problems for red and then blue, gives value functions g1 and g2 respectively,
which, in turn, appear in the expressions (A.4) and (A.12) for the value functions for
step (c).
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De�ne g1 and g2 by, for 0 < y < 1,

g1(y;C1; C2) =
c�2

2�2
(2y � 1) log( y

1� y )� C1(y �
1

2
) + C2, (A.2)

g2(y;C1; C2) =
c�2

2�2
(2y � 1) log( y

1� y ) + C1(y �
1

2
) + C2,

where the constants C1 and C2 will be determined by the smooth-contact conditions
discussed in connection with the Figure. In particular, they will di¤er between parts (i)
and (ii).

Let P � be the probability measure in P0 which has density generator process (�t),

��t = (�̂
�

t =�)1Zt�0 + (�̂
�

t =�)1Zt>0.

It will be shown that P � is the worst-case scenario in P0.

Proof of (ii): Consider the classical optimal stopping problem under the measure P �,

max
�
EP � [X(Z� )� c� ], (A.3)

where X (�) is de�ned in (3.9). To describe the value function v for this problem, de�ne

v(z) =

8>>>>><>>>>>:

1
2 � �+

2�
1+ 1+�

1��'(z)
if z < �z

g1(1� 1
1+ 1+�

1��'(z)
;C1; C2) if � z � z < 0

g2(1� 1
1+ 1��

1+�
'(z)

;C1; C2) if 0 � z < z
1
2 + ��

2�
1+ 1��

1+�
'(z)

if z � z;

(A.4)

where

C1 = 2��
c�2

2�2
l(�r), C2 =

1

2
+
c�2

4�2
(2�r � 1)2
�r(1� �r) .

Lemma A.1. v is the value function of the classical optimal stopping problem (A.3),
i.e., for any t � 0,

v(z) = max
��t

EP � [X(Z� )� c(� � t) j Zt = z].

Further, v satis�es the following HJB equation

maxfX(z)� v(z);�c+ 1
2
�2vzz(z) + f(z;�sgn(z)�)vz(z)g = 0, (A.5)
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where sgn(z) = 1 if z � 0, = �1 if z < 0, and

f(z; p) = �� 2�

1 + 1+p
1�p'(z)

. (A.6)

Finally, v also satis�es
sgn(vz(z)) = sgn(z), and (A.7)

�c+ 1
2
�2vzz(z) + f(z;�sgn(z)�)vz(z) = 0 8z 2 (�z; z); (A.8)

For the proof, �rst verify that v de�ned in (A.4) satis�es the HJB equation (A.5), and
then apply El Karoui et al. (1997, Theorems 8.5, 8.6). Alternatively, a proof can be
constructed along the lines of Peskir and Shiryaev (2006, Ch. 6).

Next we prove that, for t � 0,

v(z) = max
��t

min
P2P0

EP [X(Z� )� c(� � t) j Zt = z],

that is, v is the value function of our optimal stopping problem (3.1). Since v(z) is time
invariant, we prove only the case t = 0.

By Lemma A.1,

v(z) = max
�
EP � [X(Z� )� c� ] � max

�
min
P2P0

EP [X(Z� )� c� ].

To prove the opposite inequality, consider the stopping time

�� = infft � 0 :j Zt j� zg:

For t � ��, by Ito�s formula, (A.5), (A.7) and (A.8),

dv(Zt) =
1

2
�2vzz(Zt)dt+ vz(Zt)dZt (A.9)

= [c� f(Zt;�sgn(Zt)�)vz(Zt)]dt+ vz(Zt)dZt
= [c� f(Zt;�sgn(vz(Zt))�)vz(Zt)]dt+ vz(Zt)dZt.

Each P = P � 2 P0 corresponds to a density generator process f(t; Zt; �t) where (�t) is
a fGtg-adapted process taking values in [��; �]. Set

W �
t =

1

�
Zt +

1

�

Z t

0
f(Zs; �s)ds:

Then (W �
t ) is a Brownian motion under P

� and

dv(Zt) (A.10)

= [c+ (f(Zt; �t)� f(Zt;�sgn(vz(Zt))�)) vz(Zt)]dt+ �vz(Zt)dW
�
t :
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Because f(z; p) is increasing in p,

(f(Zt; �t)� f(Zt;�sgn(vz(Zt))�)) vz(Zt) � 0.

Taking expectation in (A.10) under P � , we have

v(z) � EP � [v(Z��)� c��]
= EP � [X(Z��)� c��]:

The above inequality is due to

EP � [

Z ��

0
�vz(Zt)dW

�
t ] = 0,

which is guaranteed by
max
Q2P0

EQ[�
�] <1; (A.11)

see Peskir and Shiryaev (2006, Theorem 21.1) for the classical case. In our setting,
(A.11) is implied by the boundedness of Xt because:

�1 < max
�2�

min
P2P0

EP (X� � c�) = max
�2�

[�max
P2P0

EP (c� �X� )]

� max
�2�

[max
P2P0

EP (X� )� max
P2P0

EP (c�)] =) max
Q2P0

EQ[�
�] <1.

Finally, because P � can be any measure in P0, deduce that

v(z) � min
P2P0

EP [X(Z��)� c��]

� max
�
min
P2P0

EP [X(Z� )� c� ].

Conclude that v is the value function for our optimal stopping problem and that �� is
the optimal stopping time. Note that the time 0 signal Z0 = 0 falls in the continuation
region.

To complete the proof of statement (ii), let z be given by

z =
�2

2�
log(

1 + �

1� �) < z.

It follows from (3.2) and (3.5) that at any given t, not necessarily an optimal stopping
time, betting on the ambiguous urn is preferred to betting on the risky urn i¤ j Zt j� z.
Thus at �� > 0,

j Z�� j= z > z,

and betting on the ambiguous urn is optimal on stopping.
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Remark 3. The preceding implies that P � is indeed the minimizing measure because
the minimax property is satis�ed:

max
�
EP �X (Z� ) = max

�
min
P2P0

EPX (Z� ) �

min
P2P0

max
�
EPX (Z� ) � max

�
EP �X (Z� ) =)

min
P2P0

max
�
EPX (Z� ) = max

�
min
P2P0

EPX (Z� ) .

Proof of (i): The proof is similar to that of part (ii). The only di¤erence is that, as
illustrated in panel I of the Figure, there is contact between the value function and X
in an interval surrounding 0. This leads to the new constants

C3 = �, C4 =
1

2
+
c�2

2�2
(

1

2r̂(1� r̂) � 2);

and to the value function v given by

v(z) =

8>>>>>>><>>>>>>>:

1
2 � �+

2�
1+ 1+�

1��'(z)
if z � ��z

g3(1� 1
1+ 1+�

1��'(z)
;C3; C4) if � �z < z < �bz

1
2 �bz � z � bz

g4(1� 1
1+ 1��

1+�
'(z)

;C3; C4) if bz < z < �z
1
2 + ��

2�
1+ 1��

1+�
'(z)

if �z � z;

(A.12)

where

�z =
�2

2�

�
log

1 + �

1� � + log
br

1� br
�
;

bz =
�2

2�

�
log

1 + �

1� � + log
1� brbr

�
:

The continuation region for this case is (��z;�bz)[(bz; �z). Note that 1+�2 � br is equivalent
to �r � 1+�

2 which is also equivalent to bz � 0. Thus 1+�2 � br implies that
��z � �bz < bz � �z.

The signi�cance of the interval [�bz; bz] is that DM should stop and bet on risky urn
when Z� �rst enters the interval. In our context, this occurs at time 0 because Z0 = 0.
�
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B. Appendix: More details on the Ellsberg urns

A corollary of Theorem 3.1 elaborates on the properties of the optimal stopping time.
Given two stopping strategies �1 and �2, say that �1 stops later if

f! 2 
 : �1 (!) � tg � f! 2 
 : �2 (!) � tg, for every t.

If both strategies have the form in the theorem with critical values z1 and z2 respectively,
then the preceding is equivalent to z1 � z2. Denote by P � the probability distribution
of (Zt) if � is the true bias.

Corollary B.1. (a) DM stops sampling later in each of the following cases:
(a.1) c falls. (a.2) � increases in the interval [0; 2br � 1), where br is de�ned in (3.11).
(a.3) � and � both increase in such a way that �=�2 is constant.
(b) P � (�� <1) = 1 for every �.
(c) For each �, the mean delay time according to P � is �nite and given by

E��� =

8<: (z=�)2
�
tanh(�z=�2)

�z=�2

�
if � 6= 0

(z=�)2 if � = 0.
(B.1)

(d) For each � 6= 0,
P � (f�Z�� > 0g) =

1

1 + exp
�
�2j�j
�2
z
� .

Proof. (a.1) ` (�) increasing implies that br is decreasing in c. There exists bc such that
c < bc i¤ � < 2br�1 =) l(1+�2 ) <

4�3

c�2
, which implies that both r and z increase as c falls.

For c � bc, part (i) of the theorem gives �� = 0.
(a.2) z is increasing in �: `0 (r) = 1

r2(1�r)2 ,
dz
d� > 0 i¤

2r2
1��`

0 (r) > 1+�
1�r2

1
2`
0 �1+�

2

�
i¤

(1� �) (1 + �) > r (1� r). But 12 <
1+�
2 < br < r =) 1+�

2 �
1��
2 > br (1� br) > r (1� r) =)

(1� �) (1 + �) > 4r (1� r) > r (1� r)
(a.3) If `

�
1+�
2

�
� 4�3

c�2
, then 1+�

2 � br and �� = 0. Next restrict attention to parameter
values satisfying `

�
1+�
2

�
< 4�3

c�2
and consider an increase in � with �=�2 held constant.

In this region, r > 1
2 and z is an increasing function of r, which in turn is an increasing

function of �2, hence of �.
(b) and (c) follow from well-known results regarding hitting times of Brownian mo-

tion with drift (see Borodin and Salminen (2015), for example). Here the question
concerns the distribution of the time at which Zt �rst hits �z, assuming case (ii) of the
theorem where some sampling is optimal. To prove (d), apply the optional stopping
theorem to the martingale e�2�Zt=�

2
. �
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That lower cost leads to longer sampling, as in (a.1), is not surprising. (a.2) is more
interesting. When � is in the indicated interval, part (ii) of the theorem applies and
�� > 0. In that case, greater ambiguity leads to a worst-case scenario that renders the
signal structure less informative, hence requiring a longer sample for learning enough
to improve the choice between bets. But eventually, when � reaches 2br � 1, the sample
size needed to learn is too long to justify the cost, and the response time drops to zero.

Consider (a.3). The separate comparative static e¤ects of � and � are indeterminate.
For example, an increase in � has two opposite e¤ects. A larger signal variance implies
a smaller response (in absolute value) to any realized signal when updating (recall
(3.7)). Therefore, any given impact on beliefs requires a stronger signal, hence also a
larger sample. However, looking forward, a larger signal variance implies that less can
be gained from future learning, which argues for a smaller sample. The net e¤ect is
indeterminate without further assumptions. Similarly for the e¤ects of �, though the
directions of each of the noted e¤ects are reversed. However, when both parameters
change in such a way that the ratio �=�2 is constant, then only the second forward-
looking e¤ect (of an increase in �) applies and DM decides later.

Interpretation of (b) and (c) is clear. For (d), note that �Z�� > 0 if and only if the
bet on red (blue) is chosen on stopping if � > 0 (� < 0). Thus (d) gives the probability,
if � 6= 0 is the true bias, of choosing the correct bet on stopping. That probability
increases with � and j � j, and declines with c and �.

The proof of Theorem 3.1 yields a closed-form expression for the value function
associated with the optimal stopping problem. In particular, the value at time 0 satis�es
(from (A.4) and (A.12)),

v0 � 1
2 =

(
0 if 1+�2 � br
c�2

2�2
[ 1
2r(1�r) �

2
(1+�)(1��) ] if 1+�2 < br. (B.2)

Since the payo¤ 1
2 is the best available without learning, v0 �

1
2 is the value of the

learning option. In the region 1+�
2 < br, its value declines with �; and it equals zero when

1+�
2 � br. In contrast, it can be shown that the value of learning is increasing in the
prior variance �.
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