科研学术

您当前的位置: 首页 > 科研学术 > 学术预告 > 学术报告 > 正文

W-entropy formula on super Ricci flow and optimal transport, from Perelman to Lott-Villani

发布时间:2019-03-26     来源:    点击数:
主题: W-entropy formula on super Ricci flow and optimal transport, from Perelman to Lott-Villani
类型: 学术报告
主办方:
报告人: 李向东研究员(中科院)
日期: 2016年1月19日15:30
地点: 知新楼B1238
内容:

报告题目:W-entropy formula on super Ricci flow and optimal transport, from Perelman to Lott-Villani

报 告 人:李向东研究员(中科院数学与系统科学研究院);

报告时间:2016年1月19日15:30

报告地点:知新楼B1238

摘要:Inspired by G. Perelman's work for the proof of Poincare's conjecture, we prove the W-entropy formula for the heat equation of the time dependent Witten Laplacian on super Ricci flow. We then prove the W-entropy formula for the transport equation and the Hamilton-Jacobi equation on manifolds. Our work recaptures Lott-Villani's theorem on the displacement convexity of the Boltzmann type entropy on the Wasserstein space over Riemannian manifolds with non-negative Ricci curvature. To better understand the above two results, we introduce the Langevin deformation of flows on the Wasserstein space, which interpolates the heat equation and the Hamilton-Jacobi equation on manifolds. The W-entropy formula is extended to this deformation. Joint work with Songzi Li.

欢迎各位老师同学积极参加!

版权所有:山东大学中泰证券金融研究院
   地址:中国山东省济南市山大南路27号   邮编:250100    电话:0531-88364100   院长信箱: sxyuanzhang@sdu.edu.cn