主题: |
W-entropy formula on super Ricci flow and optimal transport, from Perelman to Lott-Villani |
类型: |
学术报告
|
主办方: |
|
报告人: |
李向东研究员(中科院) |
日期: |
2016年1月19日15:30 |
地点: |
知新楼B1238 |
内容: |
报告题目:W-entropy formula on super Ricci flow and optimal transport, from Perelman to Lott-Villani
报 告 人:李向东研究员(中科院数学与系统科学研究院);
报告时间:2016年1月19日15:30
报告地点:知新楼B1238
摘要:Inspired by G. Perelman's work for the proof of Poincare's conjecture, we prove the W-entropy formula for the heat equation of the time dependent Witten Laplacian on super Ricci flow. We then prove the W-entropy formula for the transport equation and the Hamilton-Jacobi equation on manifolds. Our work recaptures Lott-Villani's theorem on the displacement convexity of the Boltzmann type entropy on the Wasserstein space over Riemannian manifolds with non-negative Ricci curvature. To better understand the above two results, we introduce the Langevin deformation of flows on the Wasserstein space, which interpolates the heat equation and the Hamilton-Jacobi equation on manifolds. The W-entropy formula is extended to this deformation. Joint work with Songzi Li.
欢迎各位老师同学积极参加!
|