题目:Stochastic Averaging
摘要:
I will present the Khasminskii method of stochastic averaging [1] for the case when the unperturbed system is non-random (and finite-dimensional). The presentation is simplified compare to [1] due to new technical solutions, found to work with stochastic averaging for PDEs (see [2] for some of them in the case of DETERMINISTIC perturbations). At the end of the course I will discuss what changes if the unperturbed system is stochastic.
参考文献:
[1] Khasminski R., On the avaraging principle for Ito stochastic differential equations (in Russ.), Kybernetika 4 (1968), 260-279.
[2] Jian W., Kuksin S.B., Wu Y., Krylov--Bogolyubov averaging, Russian Mathematical Surveys, 75:3 (2020)
前三次 会议链接:
第一次:
会议时间:2020/10/27 16:00-18:00
会议 ID:901 551 055
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/s/wSXRugE00N46
第一次.pdf(点击下载)
第二次:
会议时间:2020/11/3 16:00-18:00
会议 ID:428 166 806
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/s/F7t7a1swi47D
第二次.pdf(点击下载)
第三次:
会议时间:2020/11/10 16:00-18:00
会议 ID:387 246 118
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/s/E4SO8sOeLeUB