题目:Stochastic Averaging
摘要:
I will present the Khasminskii method of stochastic averaging [1] for the case when the unperturbed system is non-random (and finite-dimensional). The presentation is simplified compare to [1] due to new technical solutions, found to work with stochastic averaging for PDEs (see [2] for some of them in the case of DETERMINISTIC perturbations). At the end of the course I will discuss what changes if the unperturbed system is stochastic.
参考文献:
[1] Khasminski R., On the avaraging principle for Ito stochastic differential equations (in Russ.), Kybernetika 4 (1968), 260-279.
[2] Jian W., Kuksin S.B., Wu Y., Krylov--Bogolyubov averaging, Russian Mathematical Surveys, 75:3 (2020)
第四次
时间:2020/11/17 16:00-18:00
腾讯会议地址: https://meeting.tencent.com/s/QvzZbmSbZnyE
会议ID:412 222 166
第五次
时间:2020/11/24 16:00-18:00
腾讯会议地址: https://meeting.tencent.com/s/T4clhPGaZitG
会议ID:413 249 314
第六次
时间:2020/12/1 16:00-18:00
腾讯会议地址:https://meeting.tencent.com/s/CQ2eKTgjvaiX
会议ID:116 855 675