科研学术

您当前的位置: 首页 > 科研学术 > 学术预告 > 学术报告 > 正文

Testing Kronecker Product Covariance Matrices for High-dimensional Matrix-Variate Data

发布时间:2021-10-11     来源:    点击数:


报告题目:Testing Kronecker Product Covariance Matrices for High-dimensional Matrix-Variate Data

主 讲 人:周望

报告时间:2021102115:00-16:00

报告地点: 腾讯会议 会议 ID411 278 359

点击链接入会: https://meeting.tencent.com/dm/kzKvLikE1Fqw


报告摘要:

Kronecker product covariance structure provides an efficient way to modeling the inter-correlations of matrix-variate data. In this paper, we propose testing statistics for Kronecker product covariance matrix based on linear spectral statistics of renormalized sample covariance matrices. Central limit theorem is proved for the linear spectral statistics with explicit formulas for mean and covariance functions, which fills in the gap in the literature. We then theoretically justify that the proposed testing statistics have well-controlled sizes and strong powers. To facilitate practical usefulness, we further propose a bootstrap resampling algorithm to approximate the limiting distribution of associated linear spectral statistics. Consistency of the bootstrap procedure is guaranteed under mild conditions.  Extensive numerical studies demonstrate empirically reliable performance of the proposed testing procedure. The approach is then applied to the analysis of a real data set with well-structured portfolio returns. Various estimation approaches lead to contradictory investing strategies in this example, while our testing procedure provides a guideline of selecting the most convincing strategy.


主讲人简介:

周望,新加坡国立大学统计与应用概率系教授。主要从事统计学的理论与应用研究,在高维数据估计、高维数据检验、数据降维、大维数据随机矩阵领域取得了重要的成果。迄今为止,在Annals of ProbabilityAnnals of Applied ProbabilityAnnals of Statistics, Journal of American Statistical Association, Journal of Royal Statistical SocietyB, Biometrika, Bernoulli, Journal of EconometricsTrans. Amer. Math. Soc. 等国际顶级期刊发表论文近60篇。


邀请人:何勇


欢迎感兴趣的老师和同学参加!


版权所有:山东大学中泰证券金融研究院
   地址:中国山东省济南市山大南路27号   邮编:250100    电话:0531-88364100   院长信箱: sxyuanzhang@sdu.edu.cn