报告题目:Statistical Methods for Precision Medicine with Time-to-Event Endpoints
报 告 人:赵利辉(美国西北大学)
报告时间:2019年9月2日(周一) 下午4:00-5:00
报告地点:知新楼B-1238
报告摘要:
When comparing a new treatment to a control with a time-to-event endpoint in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. Furthermore, standard methods of summarizing the treatment difference are based on Kaplan-Meier curves, the logrank test and the point and interval estimates via Cox's proportional hazards model. However, when the proportional hazards assumption is violated, the logrank test may not have sufficient power to detect the difference between two event time distributions, and the resulting hazard ratio estimate is difficult, if not impossible, to interpret as a treatment contrast. In this research, we propose a systematic, effective way to identify a promising subpopulation, for which the new treatment is expected to have a desired survival benefit, using the data from a current study involving similar comparator treatments. We illustrate the methods with the data from a randomized clinical trial.
欢迎各位老师同学积极参加!