博士生论坛

您当前的位置: 首页 > 博士生论坛 > 学术报告 > 正文

学术报告:On the critical one component regularity for 3-D Navier-Stokes system

发布时间:2018-04-26     来源:    点击数:

报 告 人:Ping Zhang (Academy of Mathematicsand Systems Science, Chinese Academy of Sciences)

报告题目:On the critical one componentregularity for 3-D Navier-Stokes system

报告时间:201842617:00-18:00

报告地点:知新楼B-1238

 

报告摘要:

Given an initial data $v_0$ with vorticity$\Om_0=\na\times v_0$ in $L^{\frac 3 2},$ (which implies that $v_0$ belongs tothe Sobolev space $H^{\frac12}$), we prove that the solution $v$ given by theclassical Fujita-Katotheorem blows up in a finite time $T^\star$   only if, for any $p$ in $ ]4,6[$ and anyunit vector $e$ in $\R^3,$ there holds $\int_0^{T^\star}\|v(t)\cdote\|_{\dH^{\f12+\f2p}}^p\,dt=\infty.$ We remark that all these quantities arescaling invariant under the scaling transformation of Navier-Stokes system.

 

欢迎各位老师同学积极参加!

版权所有:山东大学中泰证券金融研究院
   地址:中国山东省济南市山大南路27号   邮编:250100    电话:0531-88364100   院长信箱: sxyuanzhang@sdu.edu.cn