| 主题: | Sufficient Dimension Reduction for Multiple Populations | 
			
				| 类型: | 学术报告 | 
			
				| 主办方: |  | 
			
				| 报告人: | 文学荣(Missouri University) | 
			
				
				| 日期: | 5月24日下午3点-4点 | 
			
			
				| 地点: | 知新楼B-1248 | 
			
				| 内容: | Title: Sufficient Dimension Reduction for Multiple Populations 
 Abstract: Two topics in the area of dimension reduction for multiple populations will be explored.  We will first propose a link-free test for testing whether two (or more) multi-index models share identical indices via the sufficient dimension reduction approach. Test statistics are developed based upon three different sufficient dimension reduction methods: (i) sliced inverse regression, (ii) sliced average variance estimation and (iii) directional regression. The asymptotic null distributions of our teststatistics are derived.  Next, we will discuss model-free shrinkage variable selection via sufficient dimension reduction for multiple data sets.
 
 报告时间:5月24日下午3点-4点
 地点:知新楼B-1248
 
 Meggie Wen (文学荣)
 Associate Professor in Statistics
 Department of Mathematics and Statistics
 Missouri University of Science and Technology
 |