科研学术

您当前的位置: 首页 > 科研学术 > 学术预告 > 学术报告 > 正文

Sufficient Dimension Reduction for Multiple Populations

发布时间:2019-03-26     来源:    点击数:
主题: Sufficient Dimension Reduction for Multiple Populations
类型: 学术报告
主办方:
报告人: 文学荣(Missouri University)
日期: 5月24日下午3点-4点
地点: 知新楼B-1248
内容: Title: Sufficient Dimension Reduction for Multiple Populations
 
Abstract: Two topics in the area of dimension reduction for multiple populations will be explored.  We will first propose a link-free test for testing whether two (or more) multi-index models share identical indices via the sufficient dimension reduction approach. Test statistics are developed based upon three different sufficient dimension reduction methods: (i) sliced inverse regression, (ii) sliced average variance estimation and (iii) directional regression. The asymptotic null distributions of our teststatistics are derived.  Next, we will discuss model-free shrinkage variable selection via sufficient dimension reduction for multiple data sets.
 
报告时间:5月24日下午3点-4点
地点:知新楼B-1248
 
Meggie Wen (文学荣)
Associate Professor in Statistics
Department of Mathematics and Statistics
Missouri University of Science and Technology

版权所有:山东大学中泰证券金融研究院
   地址:中国山东省济南市山大南路27号   邮编:250100    电话:0531-88364100   院长信箱: sxyuanzhang@sdu.edu.cn