科研学术

您当前的位置: 首页 > 科研学术 > 学术预告 > 学术报告 > 正文

The backward stochastic differential equations for the vorticity equations

发布时间:2019-03-26     来源:    点击数:
主题: The backward stochastic differential equations for the vorticity equations
类型: 学术报告
主办方:
报告人: Professor Zhongmin QIAN
日期: 2013年4月2日下午13:30
地点: 知新楼B1238
内容:

报告题目:The backward stochastic differential equations for the vorticity equations

报 告 人:Professor Zhongmin QIAN (University of Oxford)

Abstrct:The backward stochastic differential equations may be considered as the sample path version of some nonlinear partial differential equations, by reading solutions to PDEs along diffusion paths. This fundamental idea was put forward by Bismut and Pardoux-Peng, and was applied to derive nonlinear Feynman formula for solutions of semi-linear parabolic equations. In this talk I will explain how to derive BSDEs associated with the vorticity equations in dimension 2 and 3, and to explain the result about the global existence in dimension 2. Vorticity equation is an equivalent form of the Navier-Stokes equation for imcompressible fluids, and has the advantage of appealing physical interpretation.

 

报告时间:2013年4月2日下午13:30

地    点:知新楼B1238

版权所有:山东大学中泰证券金融研究院
   地址:中国山东省济南市山大南路27号   邮编:250100    电话:0531-88364100   院长信箱: sxyuanzhang@sdu.edu.cn