报告题目:On Kyle-Back Equilibrium Problem — The Case of Dynamic Information
主 讲 人:马进教授,南加州大学
报告时间:
2021 年 12 月 9 日 上午 8:30-9:30(北京时间)
2021 年 12 月 8 日 下午 4:30-5:30(北美时间)
报告地点:Zoom 会议号:846 2496 2957 密码:1209
报告摘要:
We consider the well-known Kyle-Back Strategic Insider Trading problem in the case of dynamic information. Specifically, we assume that, besides knowing the law of the underlying asset at a future time, the insider also observes the liquidity value of the asset dynamically. Assuming that the market price is determined via a Bertrand competition, hence the optional projection of the underlying asset value, we Markovize it by introducing an auxiliary diffusion process in the spirit of the weighted total order process, through a set of “pricing rule" functions. By considering a class of stochastic Two-Point Boundary Value Problems (STPBVP), which removes the martingale requirement of the popular dynamic Markov bridge in the literature, we propose a solution scheme for the equilibrium problem under a very general model of the underlying asset. In the case when the solution of STPBVP has an affine structure, we show that the pricing rule functions, whence the Kyle-Back equilibrium, can be determined by the decoupling field of a forward -backward SDE obtained via a non-linear filtering approach.
This talk is based on the joint work with Ying Tan.
主讲人介绍:
马进教授的主要研究兴趣包括随机分析、随机微分方程;正倒向随机微分方程及其数值方法;随机偏微分方程;随机偏微分方程、随机偏微分方程、路径相关偏微分方程和粗糙偏微分方程的粘性解理论;随机控制理论;数学金融;和随机保险。
马进教授在中国上海长大。他在上海复旦大学获得学士和硕士学位并随后担任讲师,1987年来到美国。在Naresh Jain教授的指导下,他获得了明尼苏达大学的博士学位。随后,他在普渡大学先后担任助理教授、副教授和教授,并于2007年转至南加州大学任教。
马进教授目前是四个研究性期刊的Associate Editor,自2007年起一直担任南加州大学Dornsife学院数学金融项目主任。
欢迎各位老师同学积极参加!