报告题目: On the uniqueness of solutions to quadratic BSDEs with non-convex generators and unbounded terminal conditions
主 讲 人:范胜君
报告时间:2022年1月8日 上午10:00-11:00
报告地点:腾讯会议,会议ID: 502-939-990
https://meeting.tencent.com/dm/vxix1i9ycXSv
报告摘要:
We prove a uniqueness result of the unbounded solution for a quadratic backward stochastic differential equation whose terminal condition is unbounded and whose generator $g$ may be non-Lipschitz continuous in the state variable $y$ and non-convex (non-concave) in the state variable $z$, and instead satisfies a strictly quadratic condition and an additional assumption. The key observation is that if the generator is strictly quadratic, then the quadratic variation of the first component of the solution admits an exponential moment. Typically, a Lipschitz perturbation of some convex (concave) function satisfies the additional assumption mentioned above. This generalizes some results obtained in Briand and Hu [PTRF, 136(2006), 141(2008) ] .
主讲人简介:
范胜君,工学博士,理学博士后。现任中国矿业大学研究生院副院长,数学学院教授、博士生导师。法国雷恩一大访问学者。兼任江苏省高校数学教学研究会副理事长、江苏省概率统计学会常务理事、美国数学评论评论员。入选江苏省青蓝工程中青年学术带头人、江苏省青蓝工程优秀教学团队等人才项目。
近年来,主持国家自然科学基金项目2项、省部级基金项目3项。在《Stochastic Processes and their Applications》、《中国科学》等中国数学会T类期刊上发表学术论文40余篇。获江苏省优秀教学成果一等奖、全国煤炭高等教育优秀教学成果一等奖、中国矿业大学优秀教学成果一等奖、校青年教师讲课比赛奖、校十佳青年教职工等二十余项荣誉和奖励。
邀请人:王法磊
欢迎各位老师同学积极参加!